
J .  Fluid Mech. (1987), vol. 182, p p .  485497 

Printed in Great Britain 

485 

On the change of amplitude of interacting solitary 
waves 

By J. G. B. BYATT-SMITH 
Department of Mathematics, University of Edinburgh, Edinburgh EH9 352, UK 

(Received 23 August 1986) 

In this paper the solitary-wave solutions of the Euler equations of motion are treated 
as a perturbation of the KdV equation. We show, analytically, that the amplitudes 
of two solitary waves are altered after interaction. This change in amplitude is 
calculated, showing that the smaller wave decreases in amplitude and the larger wave 
increases in amplitude. 

1. Introduction 
The discovery of the solitary wave was made by Scott-Russell in 1834 on the 

Edinburgh to Glasgow Union Canal. Later, in his report to the British Association 
Scott-Russell (1844) named this phenomenon ‘the great wave of elevation’. It was 
formed after a barge, that was being towed by a team of horses, hit an obstacle in 
the canal and came to a halt. On a bridge over the canal near this spot a plaque to 
commemorate this discovery was erected during the Soliton 82 conference at Heriot 
Watt University. At the unveiling ceremony a team of participants at the conference 
towed a barge in an unsuccessful attempt to recreate the phenomenon of the solitary 
wave. This failure was attributed to lack of power, a fact borne out by experiments 
of Huang et al. (1982) and Ertekin (1984) (see also Ertekin, Webster & Wehausen 
1984, 1986). These experiments show that only when the Froude number, derived 
from the speed of the boat, is greater than about 0.7, are visible solitary waves 
produced. The name solitary wave was given to Scott-Russell’s discovery by later 
authors because it consisted of a single humped wave. 

Analytic approximations for the solitary wave were given by, for example, 
Boussinesq (1872) and Korteweg & de Vries (1895). The latter authors derived an 
equation, now called the KdV equation, that is a model for the unidirectional or 
one-dimensional propagation of long waves of small amplitude. One set of solutions 
of this equation is a family of steady solitary waves. The name soliton was given to 
the solitary-wave solution of the KdV equation following the discovery that the result 
of the nonlinear interaction of a pair of unequal solitary waves leaves them unaltered, 
except for a phase shift. I n  1977, Miles extended this result in his study of solitary 
waves propagating in different directions. We shall refer to this as two-dimensional 
propagation of solitary waves. Miles had two categories of interaction: weak and 
strong. Weak interaction takes place when the angle between the normals to the 
direction of propagation is not small. The interaction is termed weak because the first 
approximation to the solution is just a superposition of the two waves. The 
interaction term first appears at second order, in the form of an additional term and 
a phase shift. This pattern is repeated at higher orders, so that the nth-order 
travelling-wave solution completely determines the (n + 1)th order interaction term. 
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While the convergence of this approximation scheme has not been demonstrated 
there seemed no evidence to suppose that it cannot be continued to any required order, 
at least for small amplitudes, until the third-order theory of Su & Mirie (1980, 1982) 
appeared. They demonstrated that a dispersive tail appeared at that order but found 
no evidence of change of amplitude. This may of course be consistent at third order 
but cannot be entirely correct since the dispersive tail has to take some energy from the 
travelling waves, and hence their amplitudes must decrease. The strong-interaction 
case, which occurs when the angle between the normals is small, is different. Miles 
obtained the solution and showed that it is closely related to the KdV solution for 
two unidirectional waves. His result shows that, as in the one-dimensional case, the 
waves are unaltered in shape and in direction of propagation, but suffer a phase shift. 
However, in both the one- and two-dimensional strong interaction, the solution to 
second order is difficult to obtain, and it is not clear that the pattern is repeated at 
this order. 

Johnson (1982) attempts to find the solution to the problem of the oblique 
interaction of a large and a small solitary wave. As in the theory of Miles there are 
strong and weak interactions. Johnson’s solution for the weak interaction appears 
to be complete and is consistent with the pattern outlined above for the small- 
amplitude case. However, the theory relies on the assumption that the two waves 
remain unaltered in amplitude after interaction. His strong-interaction theory is less 
complete and the full solution is not obtained. (He has to assume the existence of 
a function that he is unable to determine.) What now appears to be a fundamental 
weakness of his theory is the assumption that the large wave is unaltered in shape 
during the interaction. Fenton & Rienecker (1982) provide a Fourier-series method 
for solving the full Euler equations. Their method assumes periodic waves and is 
applicable to waves travelling in the same direction or in opposite directions. The 
application to solitary waves involved waves of very long, but none-the-less, finite 
wavelength. They present only one interaction for waves going in the same direction, 
and that is for two waves whose initial amplitudes were 0.1035 and 0.3252. After the 
interaction they claim that the faster wave had increased in amplitude by 0.0036 and 
that the slower wave had decreased in magnitude by 0.0018. They also claim that 
the total energy is unchanged, and that no dispersive tail is produced. However this 
cannot be entirely correct. If the waves have genuinely separated into two solitary 
waves then the above result has to mean that the total energy has increased. This 
is because the energy of solitary waves as a function of amplitude, given by Longuet- 
Higgins & Fenton (1974, figure 5) indicates that dE/da > 0 for all amplitudes less 
than about 0.6. That no dispersive tail is produced is also inconsistent with the fact 
that there is a change of amplitude. This is because of the time reversibility of the 
solution. The Fenton & Rienecker method for waves travelling in opposite directions 
shows that both waves decrease in amplitude as a result of interaction, a result 
consistent with an energy transfer to the dispersive tail. Again, however, the claim 
is made that no dispersive tail is visible and that energy is conserved. 

In  this paper we present theoretical evidence that for strong interactions the 
amplitudes of both waves will be altered after interaction. We shall consider the case 
of unidirectional propagation only, and starting from the Euler equations for fluid 
flow we shall derive the interaction equations correct to second order. These equations 
represent a perturbation of the KdV equation and can be solved by perturbation 
methods developed by Karpman & Maslov (1977a, b,  c), Keener & McLaughlin 
(1977), Kaup & Newel1 (1978), and used by Byatt-Smith (1987). The solution shows 
that there is a second-order change in the amplitudes of the interacting waves. This 
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is still in agreement with Miles since his analysis, although nonlinear, is accurate to 
the same degree of approximation as the KdV equation, namely it provides a solution 
correct to first order. We should therefore refrain from using the word soliton to 
describe Scott-Russell’s great wave of elevation, and refer to it simply as a solitary 
wave. 

2. Perturbation equations 
We follow the notation of Miles (1977) and use only dimensionless variables. Let 

(x, y )  be horizontal and vertical coordinates, t time, a7 the free-surface displacement, 
and 4 the velocity potential. The variable y has been made dimensionless and 
stretched with respect to x so that the quiescent depth is one and all derivatives are 
of order one. The characteristic non-dimensional parameters that appear are a, the 
amplitude, and 1/@, the wavelength. The boundary-value problem for inviscid 
irrotational motion is described by 

/34zz+&g = 0 (0 < Y < l+a7) ,  (2.1) 

4v = 0 (y = O ) ,  (2.2) 

(2.3) 

and 

Following, for example, Miles (1977), we look for a solution in the form 

where D = a/ax. 
Eliminating 7 between (2.3) and (2.4) yields 

1 
7 = - ~ t + ~ ~ z z t - ~ ; - q ! $ ~ ~ z z z t  + ; ~ B ~ ~ z ~ , z z - ~ 9 , z t ~ , - ~ ~ z ~ + o ~ ~ 3 ~ ~  (2.6) 

and 

-;a2{gz(9z); + $22 911 + 0(a3).  (2.7) 

For cnoidal or solitary waves, /3 is proportional to a and i t  is customary to put 
/3 = 3a/4. Then we introduce travelling coordinates, moving at the reference wave 
speed, given by 

the factor a being introduced for convenience. Then with the notation = a/a[ we 
obtain 

c = x-t, r = fat, (2.8) 

- ;q7 - 4biV + W 2 )  = - 4?iaT7 + by + b”g7 + s’g:> 
-ayhd + g ~ g i V + ~ ~ g “ ‘ + ~ g / 2 ) +  o(a3). (2.9) 

gf = -lgiv-3g’2 2 (2.10) 

so that g7 = -w- -g /2 .  (2.11) 

To first order in a this reduces to 
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To reduce this to the KdV equation we introduce 

u = -2g’. (2.12) 

Then to first order u satisfies the KdV equation 

u, = 3uu’-w. (2.13) 

Using this approximation in the higher-order terms of (2.9) we obtain 

u, = 3 u u ’ - ~ + a { - ~ + + ~ ’ ’ + ~ ’ ~ } ’ ,  (2.14) 

where the term O(a2)  has been omitted. 
This may be expressed as 

(2.15) 

where X2 and X3 are the first two operators in the hierarchy of KdV flows (see 
Byatt-Smith 1987 or McKean 6 van Morbeke 1975 for further details). These linear 
operators are given by 

X2 = Du+uD-$D3, (2.16) 

3a 
16 

u, = xyu)-gax3(U)+-{ -3uu“‘+5u‘uff+19u2u‘}, 

and X3 = *DU-~(U’’D +w) +aD5, 
where now D = a/a(. 

3. Solitary wave 
The solitary wave is by hypothesis a function of the single variable 

(2.17) 

If we look for a solution of the form 

u = G(8), K = K 1 + K 2 a  ..., c = 1+c,a+c2a2 ..., (3.2) 

G = G,+$aG:++a,&, (3.3) 

then the solution appropriate for a wave whose amplitude is a,/a is 

c, = l+$an-&,ai+ ..., (3.5) 

G o = - 2  - sech8. (3.6) t> where 

Equations (2.12) and (2.6) then yield the known second approximation (see Laitone 
1960, for example) a 

a 7 = x { l - i a n  tanh20} sech2e+0(a2). (3.7) 

4. Interaction of two solitary waves 
Equation (2.15) is a perturbation of the KdV equation and so we can use the 

method developed by Byatt-Smith (1987) to study the interaction of two solitary 
waves. Following the notation of Byatt-Smith (1987), we write (2.15) as 

u, = X(u) +aX*(u), (4.1) 
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where x = x2, (4.2) 

and X * ( u )  = -~x3(u )+~-3uu’ ’++u’u”+  19U2U’). (4.3) 

489 

The two-solitary-wave solution of the KdV equation (2.13) is 

, (4.4) 
k ~ E l + k ~ E 2 + 2 ( k l - k 2 ) 2 E , E 2 +  

E2 
u = -  

where (4.5) 

E, = exp{-(8,-8,,)}, i = 1,2.  (4.6) and 

B,, are constants and Oa is given by 

8, = kt[-+kf7, i = 1,2.  (4.7) 
This solution corresponds in (3.7) to an interaction of two solitary waves, of 

amplitudes +k: and ak;. These two values represent the only two positive eigenvalues 
of the equation 

-f”+uf =-hf. (4.8) 
The corresponding eigenfunctions are 

The theory of Byatt-Smith (1987) shows that, when u satisfies (4.1) with initial 
condition (4.4), the rate of  change of k, satisfies the equation 

m 

(4.10) 

The higher-order flows are all orthogonal to  fi, so that in particular the term 

dk, - -201 J - m f ~ x * ( u ) ,  i = 1,2. 
d7 

f X 3 ( u )  appearing in (4.10) integrates to zero, so that 

a 
d7 8 
5% = -f j-1 f :{ - ~uu”’ + ~u’u” + 19u’u2} = - (91, - 151, - 571,). (4.1 1 ) 

These three integrals may be written (see Appendix A) as 

Equation (4.11) may then be writen as 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
k 2 a  !% = +- { 11 (k: - 3k3  I4 - 33(k: - k;) Is  + 3 0 4  - 42I,}, 

d7 16 
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and similarly 

(4..16) 

The initial condition (4.4) corresponds to two given solitary waves as T+- a. The 
solution of (4.15) and (4.16) will give the change of k, and k,, and hence the change 
of amplitude of the two solitary waves, given from (4.6) as 

k: a -- dk2 - + ~ { l  l(k: - 3k3 I4 + 33(k: - k:) Is - 301, + 424). 
dr 

The phase change and resulting radiating wavetrain, or dispersive tail, may also 
be calculated (see Byatt-Smith (1987) for further details). Since k, and k, are slowly 
varying functions of time, we may approximate (4.15) and (4.16) to work out the total 

(4.18) 
change as 

regarding k, and k, as constant during the integration. Using the equivalence 
relations relevant to the integrals of 14, Ib ,  I6 and I7 (see Appendix B) we obtain 

dk, 
P,l= j d7d7,  

-aJ 

where 

and 

J ( y )  = k, k2(kl - k,)2 Sm Sm E2g + E2) d5d7 
--03 -m 

cosh y dc dp Q J W  - - I- j- (y  cosh (p ly )  + cosh 5)3 ' 
k2 - kl Y=- k,+k, '  

Using the definition of y we may write 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

The integral J may easily be shown to equal one when y = 1, and following 

J ( y )  N -4y logy as ?-to+. (4.23) 

For values of y in the range 0 < y < 1 the integral is easily computed and is shown 
in figure 1. Since the integral is positive in this range, (4.22) implies that the smaller 
solitary wave decreases in amplitude while the larger wave increases in amplitude. 
Equation (4.23) also implies that these changes tend to zero as y+O + . This is the 
case when the two amplitudes are almost equal. At  the other end of the range, where 
y+ 1 ,  the amplitude of the smaller wave is small and (4.22) implies, as we would 
expect, that the change in amplitude of the larger wave tends to zero. However if 
k, is the smaller wave and a, = a (or k, = 2), the limiting form for the change in k, 
as y+ 1 is, from (4.22) 

[k,] = --. (4.24) 

Byatt-Smith (1987) we may also obtain the result 

43a 
60 
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Y 

FIGURE 1. Graph of the integral J defined by (4.20) as a function of y in the range 0 < y Q 1. 

If this result is valid, then a wave of amplitude al/a < (43~~/120)~  would disappear 
completely during its interaction with the larger wave. While this may be the case, 
the present theory is inadequate to predict such a result. The first reason is that we 
have taken an approximate solution for (4.14) and (4.15). This may not be accurate 
enough if k, is small. Secondly, the tacit assumption of Byatt-Smith (1987), used in 
deriving the basic set of equations ((4.10) for example), is that there are no 
singularities in the spectrum of the operator, -d2/dgs+ U(&, appearing on the 
left-hand side of (4.8). Lastly, the asymptotics used to derive (2.14) may not be valid 
if the ratio of a, to a, is not of order one. 

To compare the prediction of this theory with the results of  Fenton & Rienecker, 
we need to calculate the change of amplitude of the solitary waves. From (4.17) and 
(4.22) we can obtain 

[all = Wl[k,l = -*% w,- k,) 47). (4.25) 

In terms of the original amplitudes this may be written as 

[a11 = -ti+4as(a'a-4)J(y), (4.26) 

and similarly [a21 = +%'aWi-a i )J(y) .  (4.27) 

Thus the larger wave has increased in amplitude while the smaller has decreased 
in amplitude as a result of the interaction. This is at least in qualitative agreement 
with result of Fenton & Rienecker. However if the values a, = 0.1035 and 
a, = 0.3252 are used in (4.26) and (4.27), we obtain 

[a,] = 0.0399, [as] = 0.0225. (4.28) 

This differs substantially from their result and, in comparison with their method for 
waves travelling in opposite directions, it appears that their result has changes of 
magnitude of order as, compared with the above result which is of order a,. Also, 
(4.26) and (4.27) show that l[ac,]/[a,]1, which equals (a2/al)i, is always greater thai 
one. This is consistent with the fact that the energy of the two waves is not increased 
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as result of the interaction. Since the energy of a solitary wave of small amplitude 
a is proportional to a!, it follows that 

- [El = 0 to order a, (4.29) 
E 

a result that can be obtained directly from (4.15) and (4.16), which can be integrated 

(4.30) to give the conservation law k: + ki = const. 

Since the energy of each wave cannot be altered without the production of a dispersive 
tail, the above conservation law implies that the order of magnitude of the dispersive 
tail is O(a3) ,  rather than O(a2) ,  which we would expect from an order-a2 perturbation 
that (4.1) represents. 
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Appendix A 

expressions given in (4.12)-(4.14). 
In  this Appendix we reduce the three integrals appearing in (4.11) to the 

We shall make use of the results (see Byatt-Smith 1987) 

X(f,2) = -+k,2 f f’ (i = 1,2), 

X(u) = -+ZP++uu‘, 

Using (A 3) we may obtain, using integration by parts, 

J-a, J -a, 

Then we may express I ,  as 
03 

Il  = JPa, f; UU”’ 
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W m 

= - k;(k: -lei) f; f; U’ +$(k; - 3k3 k2, I-, ~ ( f ;  f ;’-f; f ;‘) + 61,. I-m (A 5 )  

If we now take the combination 12++11, we may show that 

Hence 

Finally one integration by parts shows that 

r m  

Thus we may write 

Appendix B 

may be reduced to one integral. 
In this Appendix we show that integrals I*, I,, 1, and I ,  defined by (4.12)-(4.14) 

Equation (4.4) may be rewritten as 

and (4.9) may be used to derive the expressions (see Byatt-Smith 1987 for more 
details) 

and 
2 
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We now introduce the concept of equivalence and write 

G1(7) g 
m 

if [“ G1(7)d7 = [ G2(7)d7. 
J-m J -m 

Byatt-Smith (1987) effectively proves that 
m m 

I4d r  = 1 -m { u(f:f:’-f:f?‘)}d~ = 0, 

that is, I4 z 0. 

This may be rewritten to give 
m “ E E  

A E ,  E,. 

Similarly we may show that (see for example (B 22))  

Using (B 1 )  and (B 3 )  in the definition of I, we obtain 

- -- (E”’Ea - 3E”E’E+ 2P3)  (2E’ + ( k ,  + k,) E),. (B 10) 
(k,+k2I2 -m 

The integral is now expanded in inverse powers of E to obtain 

- 3 E ” E ( k , + k 2 ) 2 ) + P ( 4 E ” E 2 -  12(k1 +k , )E”P2+2(k ,+  k , ) E 3 )  

-E(12E”E3-8(k1+k, )  E4)+8E”). 

The last term may be integrated by parts to give 

This process is repeated three times to give 

m 2 I5 = - ={4(kl  + k,) Dv + 8(k1 + k,), E”’ + 5(k, + k,)3 E” + (k, + k,)4 E )  (k ,+k,) ,  -m 1 8 ~ 3  

E E2 
m I {$(EDv - E ” E )  + ( k ,  + k,)  ( E E  - E 2 ) )  1 (k ,+kJ2 --g) E4 ‘ 

2 - 

The second integral appears because the two terms E f f f E E l  E ,  E-4 and E 2 E ,  E,  E-4 
cannot be integrated by parts. The two additional terms have been introduced to 
reduce the integral to a simple form. 
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Using the equivalence relation (B 8) the first integral becomes 

" O E E  
{4(k, + k,) DV + 8(k, + k,), E"' + 5(k1 + k,)3 E" + ( k ,  + k,)4 E'} 

Using (4.5) we may reduce the second integral of (B 13) to 

El E2 oo 
Q(E'E''- E"'E") + ( k, + k,) (E"'E' - E",)} - 

E4 

by virtue of (B 9). 

equivalence relation 
The next step is to show that the integrals in (B 14) and (B 16) are related by the 

We first transform the equation by integrating with respect to time (7)  so that the 
left-hand side becomes 

= +kl k2(kl - k,), 

cosh 5 d5 dp m o o  
- 
- J-, (y cosh@/y)+cosh5)9' 

where 

The last line is obtained by using the transformations 
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The same set of transformations applied to the right-hand side of (B 16) gives 

To obtain the last line we have used the simple result that 

03 e-P/Y dp 00 efPIY dp 
(B 22) - - J-, (y cosh ( p l y )  + cosh 6)4 s-, (y cosh (p l y )  + cosh O4 * 

We note here that a similar transformation of the integral 

shows that it is equal to zero, which gives the result of (B 9). 

j-co (y cash ( p l y )  + cosh = [( y cosh (p l y )  + cosh C)"]-,+ J-, ( y  cosh (p ly)  + cosh 6)4 

Finally, an integration by parts gives 

3 sinh2 3dr m a  co cosh dc sinh 6 

cosh 6 dC { 1 + y cosh 6 cosh p l y }  dg 
W 

= 3  . (B23) j-, (7' cash ( p l y )  +cash 5)3-3 s-, (y  cosh (p l y )  + cosh 

Hence by rearranging this equation we obtain 

. (B24) 

This equation together with expression (B 17) and (B 21) establishes the equivalence 
relation of (B 16). Hence 

(B 25) 

00 cosh 6 d6 { 1 + y cosh 6 cosh ( p l y ) }  d6 I-, (y cosh (p l y )  + cosh 6)3 (y cosh (p ly )  + cosh 6)4 

El E2(El +E,)  (El - kA2 
kl+k,  s-, E3 

I ,  Z -ikl k, 

Using the same procedure on the remaining integrals we obtain the results 

I6 = -2- kl-k, Jm 

kl+k ,  -a3 

+ 1 2 E E 2 E - 6 E 4 ) ( 2 E + ( k l + k , ) E )  

= -fklk2(kl-k2)3 J-: y ( E l + E z ) ,  

and 

I ,  = 4L (k - k 2 ) J w  ~ ( E E " - E 2 ) 2 ( 2 E ' + ( k 1 + k , ) E )  
k,+k, -, 

O0 El E,(El+ E,) I, E3 
E -$kl k2(kl - k,)3 
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